If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-1998=0
a = 1; b = 1; c = -1998;
Δ = b2-4ac
Δ = 12-4·1·(-1998)
Δ = 7993
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{7993}}{2*1}=\frac{-1-\sqrt{7993}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{7993}}{2*1}=\frac{-1+\sqrt{7993}}{2} $
| 6t2-60t+100=0 | | 3r-5=r+7 | | 3h=7(7/2−7/3)−10 | | 7x-(2x-14)=59 | | 3h=7(7/2−7/3h)−10 | | x=3.16 | | 4x+2(x+3)=78 | | 10x=0.7 | | x^2-3x+3=5 | | 3h=7(7/2−7/3h)−10 | | 12y=4200 | | 5600=80x | | 1/4(y+5)+4=1/3(4y-1)-15 | | X-4/2=x/8 | | (s-10)^2=35 | | 1/6a-4/6=2/3a+4/3 | | 4-3x=-19 | | 20+y+y=14 | | .004(4-x)+.01(x-3)=1 | | 13+2x=75 | | 9m=11=29 | | Z=-10x | | .004(4-K)+0.01(k-3)=1 | | 4x2-4×-3=0 | | 19=c-((-12) | | (2x+1)^(1/3)=5 | | 1/3(5t-5)=11t/3-t+5/6 | | -5u-5(-6-20)=0 | | (x-195)x12=720 | | 1/3(x)-1/4(x-5)=4x | | -2(4-v)=16+6v | | 3/7y=130-y |